#define GLSLIFY 1 //Progress bar / indicator / loading animation. uniform float time; uniform float seed; uniform vec2 resolution; float noise3D(vec3 p){ return fract(sin(dot(p,vec3(12.9898,78.233,128.852)))*43758.5453)*2.-1.; } float simplex3D(vec3 p){ float f3=1./3.; float s=(p.x+p.y+p.z)*f3; int i=int(floor(p.x+s)); int j=int(floor(p.y+s)); int k=int(floor(p.z+s)); float g3=1./6.; float t=float((i+j+k))*g3; float x0=float(i)-t; float y0=float(j)-t; float z0=float(k)-t; x0=p.x-x0; y0=p.y-y0; z0=p.z-z0; int i1,j1,k1; int i2,j2,k2; if(x0>=y0) { if(y0>=z0){i1=1;j1=0;k1=0;i2=1;j2=1;k2=0;}// X Y Z order else if(x0>=z0){i1=1;j1=0;k1=0;i2=1;j2=0;k2=1;}// X Z Y order else{i1=0;j1=0;k1=1;i2=1;j2=0;k2=1;}// Z X Z order } else { if(y0<z0){i1=0;j1=0;k1=1;i2=0;j2=1;k2=1;}// Z Y X order else if(x0<z0){i1=0;j1=1;k1=0;i2=0;j2=1;k2=1;}// Y Z X order else{i1=0;j1=1;k1=0;i2=1;j2=1;k2=0;}// Y X Z order } float x1=x0-float(i1)+g3; float y1=y0-float(j1)+g3; float z1=z0-float(k1)+g3; float x2=x0-float(i2)+2.*g3; float y2=y0-float(j2)+2.*g3; float z2=z0-float(k2)+2.*g3; float x3=x0-1.+3.*g3; float y3=y0-1.+3.*g3; float z3=z0-1.+3.*g3; vec3 ijk0=vec3(i,j,k); vec3 ijk1=vec3(i+i1,j+j1,k+k1); vec3 ijk2=vec3(i+i2,j+j2,k+k2); vec3 ijk3=vec3(i+1,j+1,k+1); vec3 gr0=normalize(vec3(noise3D(ijk0),noise3D(ijk0*2.01),noise3D(ijk0*2.02))); vec3 gr1=normalize(vec3(noise3D(ijk1),noise3D(ijk1*2.01),noise3D(ijk1*2.02))); vec3 gr2=normalize(vec3(noise3D(ijk2),noise3D(ijk2*2.01),noise3D(ijk2*2.02))); vec3 gr3=normalize(vec3(noise3D(ijk3),noise3D(ijk3*2.01),noise3D(ijk3*2.02))); float n0=0.; float n1=0.; float n2=0.; float n3=0.; float t0=.5-x0*x0-y0*y0-z0*z0; if(t0>=0.) { t0*=t0; n0=t0*t0*dot(gr0,vec3(x0,y0,z0)); } float t1=.5-x1*x1-y1*y1-z1*z1; if(t1>=0.) { t1*=t1; n1=t1*t1*dot(gr1,vec3(x1,y1,z1)); } float t2=.5-x2*x2-y2*y2-z2*z2; if(t2>=0.) { t2*=t2; n2=t2*t2*dot(gr2,vec3(x2,y2,z2)); } float t3=.5-x3*x3-y3*y3-z3*z3; if(t3>=0.) { t3*=t3; n3=t3*t3*dot(gr3,vec3(x3,y3,z3)); } return 96.*(n0+n1+n2+n3); } // // GLSL textureless classic 3D noise "cnoise", // with an RSL-style periodic variant "pnoise". // Author: Stefan Gustavson (stefan.gustavson@liu.se) // Version: 2011-10-11 // // Many thanks to Ian McEwan of Ashima Arts for the // ideas for permutation and gradient selection. // // Copyright (c) 2011 Stefan Gustavson. All rights reserved. // Distributed under the MIT license. See LICENSE file. // https://github.com/ashima/webgl-noise // vec3 mod289_1(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 mod289_1(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 permute_1(vec4 x) { return mod289_1(((x*34.0)+1.0)*x); } vec4 taylorInvSqrt_1(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; } vec3 fade(vec3 t) { return t*t*t*(t*(t*6.0-15.0)+10.0); } // Classic Perlin noise, periodic variant float pnoise(vec3 P, vec3 rep) { vec3 Pi0 = mod(floor(P), rep); // Integer part, modulo period vec3 Pi1 = mod(Pi0 + vec3(1.0), rep); // Integer part + 1, mod period Pi0 = mod289_1(Pi0); Pi1 = mod289_1(Pi1); vec3 Pf0 = fract(P); // Fractional part for interpolation vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0 vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x); vec4 iy = vec4(Pi0.yy, Pi1.yy); vec4 iz0 = Pi0.zzzz; vec4 iz1 = Pi1.zzzz; vec4 ixy = permute_1(permute_1(ix) + iy); vec4 ixy0 = permute_1(ixy + iz0); vec4 ixy1 = permute_1(ixy + iz1); vec4 gx0 = ixy0 * (1.0 / 7.0); vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5; gx0 = fract(gx0); vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0); vec4 sz0 = step(gz0, vec4(0.0)); gx0 -= sz0 * (step(0.0, gx0) - 0.5); gy0 -= sz0 * (step(0.0, gy0) - 0.5); vec4 gx1 = ixy1 * (1.0 / 7.0); vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5; gx1 = fract(gx1); vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1); vec4 sz1 = step(gz1, vec4(0.0)); gx1 -= sz1 * (step(0.0, gx1) - 0.5); gy1 -= sz1 * (step(0.0, gy1) - 0.5); vec3 g000 = vec3(gx0.x,gy0.x,gz0.x); vec3 g100 = vec3(gx0.y,gy0.y,gz0.y); vec3 g010 = vec3(gx0.z,gy0.z,gz0.z); vec3 g110 = vec3(gx0.w,gy0.w,gz0.w); vec3 g001 = vec3(gx1.x,gy1.x,gz1.x); vec3 g101 = vec3(gx1.y,gy1.y,gz1.y); vec3 g011 = vec3(gx1.z,gy1.z,gz1.z); vec3 g111 = vec3(gx1.w,gy1.w,gz1.w); vec4 norm0 = taylorInvSqrt_1(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110))); g000 *= norm0.x; g010 *= norm0.y; g100 *= norm0.z; g110 *= norm0.w; vec4 norm1 = taylorInvSqrt_1(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111))); g001 *= norm1.x; g011 *= norm1.y; g101 *= norm1.z; g111 *= norm1.w; float n000 = dot(g000, Pf0); float n100 = dot(g100, vec3(Pf1.x, Pf0.yz)); float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z)); float n110 = dot(g110, vec3(Pf1.xy, Pf0.z)); float n001 = dot(g001, vec3(Pf0.xy, Pf1.z)); float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z)); float n011 = dot(g011, vec3(Pf0.x, Pf1.yz)); float n111 = dot(g111, Pf1); vec3 fade_xyz = fade(Pf0); vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z); vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y); float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x); return 2.2 * n_xyz; } // // Description : Array and textureless GLSL 2D/3D/4D simplex // noise functions. // Author : Ian McEwan, Ashima Arts. // Maintainer : ijm // Lastmod : 20110822 (ijm) // License : Copyright (C) 2011 Ashima Arts. All rights reserved. // Distributed under the MIT License. See LICENSE file. // https://github.com/ashima/webgl-noise // vec3 mod289_0(vec3 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 mod289_0(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 permute_0(vec4 x) { return mod289_0(((x*34.0)+1.0)*x); } vec4 taylorInvSqrt_0(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; } float snoise(vec3 v) { const vec2 C = vec2(1.0/6.0, 1.0/3.0) ; const vec4 D = vec4(0.0, 0.5, 1.0, 2.0); // First corner vec3 i = floor(v + dot(v, C.yyy) ); vec3 x0 = v - i + dot(i, C.xxx) ; // Other corners vec3 g = step(x0.yzx, x0.xyz); vec3 l = 1.0 - g; vec3 i1 = min( g.xyz, l.zxy ); vec3 i2 = max( g.xyz, l.zxy ); // x0 = x0 - 0.0 + 0.0 * C.xxx; // x1 = x0 - i1 + 1.0 * C.xxx; // x2 = x0 - i2 + 2.0 * C.xxx; // x3 = x0 - 1.0 + 3.0 * C.xxx; vec3 x1 = x0 - i1 + C.xxx; vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y // Permutations i = mod289_0(i); vec4 p = permute_0( permute_0( permute_0( i.z + vec4(0.0, i1.z, i2.z, 1.0 )) + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) + i.x + vec4(0.0, i1.x, i2.x, 1.0 )); // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) float n_ = 0.142857142857; // 1.0/7.0 vec3 ns = n_ * D.wyz - D.xzx; vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7) vec4 x_ = floor(j * ns.z); vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N) vec4 x = x_ *ns.x + ns.yyyy; vec4 y = y_ *ns.x + ns.yyyy; vec4 h = 1.0 - abs(x) - abs(y); vec4 b0 = vec4( x.xy, y.xy ); vec4 b1 = vec4( x.zw, y.zw ); //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; vec4 s0 = floor(b0)*2.0 + 1.0; vec4 s1 = floor(b1)*2.0 + 1.0; vec4 sh = -step(h, vec4(0.0)); vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ; vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ; vec3 p0 = vec3(a0.xy,h.x); vec3 p1 = vec3(a0.zw,h.y); vec3 p2 = vec3(a1.xy,h.z); vec3 p3 = vec3(a1.zw,h.w); //Normalise gradients vec4 norm = taylorInvSqrt_0(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; // Mix final noise value vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0); m = m * m; return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3) ) ); } float grain(vec2 texCoord, vec2 resolution, float frame, float multiplier) { vec2 mult = texCoord * resolution; float offset = snoise(vec3(mult / multiplier, frame)); float n1 = pnoise(vec3(mult, offset), vec3(1.0/texCoord * resolution, 1.0)); return n1 / 2.0 + 0.5; } float grain(vec2 texCoord, vec2 resolution, float frame) { return grain(texCoord, resolution, frame, 2.5); } float grain(vec2 texCoord, vec2 resolution) { return grain(texCoord, resolution, 0.0); } #define PI 3.1415926535897932384626433832795 const float rSpeed=.2; const float blobFrequency=3.; const float blobAmplitude=.03; vec2 sdBlob(in vec2 p,in vec2 center,in float size,float timeOffset){ float a=(degrees(atan(center.y-p.y,center.x-p.x))+180.)/360.; float lt=fract((time+timeOffset)*rSpeed); float v1=simplex3D(vec3(p.x*blobFrequency+time*rSpeed+timeOffset*25.46362,p.y*blobFrequency+time*rSpeed+timeOffset*1.23267,center.x*46.32582)); float d=distance(center,p)-size+v1*blobAmplitude; return vec2(d,a); } // Function from Iñigo Quiles // www.iquilezles.org/www/articles/functions/functions.htm float impulse(float x,float k){ float h=k*x; return h*exp(1.-h); } float pcurve(float x,float a,float b) { float k=pow(a+b,a+b)/(pow(a,a)*pow(b,b)); return k*pow(x,a)*pow(1.-x,b); } vec4 bubble(vec2 p,in float timeOffset){ float lt=fract((time+timeOffset)*rSpeed); vec2 bl=sdBlob(p,vec2(0.),.07,timeOffset); float d=bl.x; float i=impulse(-d*5.,max((pow(pcurve(lt,5.,20.),.8)*40.),0.)); return vec4(vec3(i),i); } void main(){ vec2 uv=gl_FragCoord.xy/resolution.xy; vec4 color=vec4(0.,0.,0.,1.); //normalize uv uv-=vec2(.5); uv*=vec2(1.,resolution.y/resolution.x); vec4 c=vec4(0.); for(float i=-1.;i<=1.;++i){ c=bubble(uv+vec2(i*.2,0.),1.*i); color=max(color,c); } color+=simplex3D(vec3(uv+time*rSpeed*.13596,time*rSpeed*.2425))*.2; color=mix(color,vec4(1.,1.,1.,1.),grain(uv,resolution.xy*.5,time*2.,3.)*.1); gl_FragColor=color; }